First Report of green Synthesis of Copper Oxide Nanoparticles from Brassica Tournefortii Leaves Extract and Their Antibacterial Activity

Authors

  • Wedad M. Barag Chemistry Department, Faculty of Science, University of Zawia, Libya Author
  • Fatma A. Shtewi Chemistry Department, Faculty of Science, University of Zawia, Libya Author
  • Wedad M. Al-Adiwish Chemistry Department, Faculty of Science, University of Zawia, Libya Author
  • Awatif A. Tarroush Chemistry Department, Faculty of Science, University of Zawia, Libya Author

DOI:

https://doi.org/10.54361/LJMR.16.2B.06

Keywords:

Antibacterial activity, Bioreduction method, Brassica tournefortii leaves extract, CuO nanoparticles

Abstract

In the present study, copper oxide nanoparticles (CuO NPs) were synthesized using a eco-friendly technique and evaluated their antibacterial activity. At the first time, Brassica tournefortii leaves extract mediated copper oxide-based nanoparticles which prepared by a bio-reduction method using an aqueous Brassica tournefortii leaves extract as both a reducing and stabilizing agent. Copper oxide nanoparticles were characterized by using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform-infrared spectroscopy (FT-IR),   x-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The synthesized CuO nanoparticles were also evaluated for their antibacterial activity against gram-positive (Staphylococcus aureus and Streptococcus spp) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. UV-Vis and FT-IR results showed that the successful formation and stabilization of copper oxide nanoparticles due to biomolecules in Brassica tournefortii extract. XRD results indicated that the CuO nanoparticles were monoclinic of size 27.73 nm. SEM image showed that CuO nanoparticles had spherical morphology. Furthermore, Antibacterial activity showed that CuO nanoparticles have good antibacterial agent against both gram positive and gram-negative organisms. The antibacterial assay revealed that Pseudomonas aeruginosa a maximum zone of inhibition (44 mm) at 30 mg/ml concentration of CuO nanoparticles.

Downloads

Download data is not yet available.

References

1. Akintelu S. A., Folorunso A. S., Folorunso F. A., Oyebamiji A. K. (2020). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6, e04508, 1-12

https://dio.org/10.1016/j. heliyon.2020.e04508

2. Abebe B. , Zereffa E.A., Tadesse A., Murthy H. C. A. (2020) A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation, Nanoscale Research Letters 15:190 , 1-19 https://doi.org/10.1186/s11671-020-03418-6

3. Bagherzadeh M., Safarkhani M., Ghadiri A. M., Kiani M., Fatahi Y., Taghavimandi F., Daneshgar H., Abbariki N., Makvandi P., Varma R.S., Rabiee N.( 2022) Bioengineering of CuO porous (nano)particles: role of surface amination in biological, antibacterial, and photocatalytic activity. Scientific Reports, 12:15351 https://doi.org/10.1038/s41598-022-19553-2

4. Siddiqi, K. S., Husen, A., (2020). Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review., Biomaterials Research., 24(1), 1-15.

5. Huang, H., Yu, Q., Ye, Y., Wang, P., Zhang, L., Gao, M., Peng, X. and Ye. Z., (2012), Thin copper oxide nanowires/carbon nanotubes interpenetrating networks for lithium ion batteries., Cryst Eng Comm., 14 (21), 7294–7300. DOI: 10.1039/C2CE25873K

6.

7. Ramgir, N., Datta, N., Kaur, M., Kailasaganapathi, S., Debnath, A.K., Aswal, D. and Gupta, S., (2013), Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects., Colloid Surface A., 439: 101–116. DIO:10.1016/j.colsurfa.2013.02.029

8. Hong, L., Liu, A.L., Li, G.W., Chen, W. and Lin, X.H., (2013), Chemiluminescent cholesterol sensor based on Peroxidase like activity of cupric oxide nanoparticles., Biosens Bioelectron., 43, 1-5. DIO: 10.1016/j.talanta.2012.06.061

9. Hosseinpour, M., Ahmadi, S.J., Mousavand, T. and Outokesh, M.J., (2010), Production of granulated-copper oxide nanoparticles for catalytic application., J Mat Res., 25 (10), 2025-2034. DOI: 10.1557/JMR.2010.0262.

10. Norzaee, S., Djahed,B., Khaksefidi,R. and Mostafapour,F.K., (2017), Photocatalytic degradation of aniline in water using CuO nanoparticles., Journal of Water Supply: Research and Technology-Aqua., 66 (3), 178–185. DOI:10.2166/aqua.2017.104

11. ThekkaePadil, V. V. T., Černík, M., (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application., International journal of nanomedicine., 8, 889-898. DOI:10.2147/IJN.S40599

12. Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci. 2015, 9, 7–12. http://dx.doi.org/10.1016/j.jtusci.2014.04.006

13. Mohammed W.M., Mubark T. H., Al-Haddad R. M. S. (2018) Effect of CuO Nanoparticles on Antimicrobial Activity Prepared by Sol-Gel Method. International Journal of Applied Engineering Research , 13(12): 10559-10562

14. Gebremedhn, K., Kahsay, M.H. and Aklilu, M., (2019), Green Synthesis of CuO Nanoparticles Using Leaf Extract of Catha edulis and Its Antibacterial Activity., Journal of Pharmacy and Pharmacology, 7, 327-342. DOI:10.17265/2328-2150/2019.06.007

15. Iravani, S., (2011), Green synthesis of metal nanoparticles using plants., Green Chem., 13, 2638-2650. dio: 10.1039/C1GC15386B

16. Rahmani, R. Beaufort, S.Villarreal Soto, A.S. Taillandier, P. Bouajila,J. Debouba M. (2019). Kombucha fermentation of Africanmustard (Brassica tournefortii) leaves: Chemical composition and bioactivity. Food Biosciences, 30, https://doi.org/10.1016/j.fbio.2019. 100414

17. Rahmani R., Bouajila J., Jouaidi M. , Debouba M. (2020). African mustard (Brassica tournefortii) as source of nutrients and nutraceuticals properties. Journal of Food Science, Wiley, 2020, 85 (6), pp.1-16. 10.1111/1750-3841.15157. hal-02869551

18. Daniel SCGK, Nehru K, Sivakumar M (2012) Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its antibacterial activity. Curr Nanosci 8(1):125–129

19. Eslami, S., Ebrahimzadeh, M. A., and Biparva, P., (2018). Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC advances., 8(46), 26144-26155.DOI: 10.1039/C8RA04451A

20. Sharma j.k., Akhtar M. S., Ameen S., Srivastava P., Singh G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds 632 (2015) 321–325

21. Djamila B., Salah Eddine L., Abderrhmane B., Nassiba A., Barhoum A. (2022). In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Conversion and Biorefinery. 1-14 https://doi.org/10.1007/s13399-022-02743-3

22. Mott N.F. and E.A. Davies, Electronic Processes in Non-Crystalline Materials, second Edition. Clare don Press, Oxford, 1979.

23. Shtewi F.A, Al-Adiwish W. M., Alqamoudy H. A., Tarroush A.A. (2021) Green Synthesis and Characterization of Crystalline CuO Nanoparticles using Aqueous Mentha Piperita L. Leaf Extract. sebha university journal of pure & applied sciences, 20 (2): 1-6 DOI: 10.51984/JOPAS.V20I2.1340

24. Dagher, S., Haik,Y., Ayesh, A. I. and Tit, N., (2014), Synthesis and optical properties of colloidal CuO nanoparticles., J Luminesce., 151, 149-154. DOI: 10.1016/j.jlumin.2014.02.015

25. Oliveira, R. N., Mancini, M. C., Oliveira, F. C. S. D., Passos, T. M., Quilty, B., Thiré, R. M. D. S. M., & McGuinness, G. B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21, 767-779.

26. Padil, V. V. T., & Černík, M. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International journal of nanomedicine, 8, 889.‏

27. Barag W.M., Shtewi F. A., Tarroush A.A. (2021). Green Synthesis, Structural and Optical Properties of Copper Oxide Nanoparticles using Malva Parviflora. sebha university journal of pure & applied sciences, 20 (1): 25-27 DOI: 10.13140/RG.2.2.28834.86728

28. Saif, S., Tahir, A., Asim, T., & Chen, Y. (2016). Plant mediated green synthesis of CuO nanoparticles: comparison of toxicity of enginMakeswarieered and plant mediated CuO nanoparticles towards Daphnia magna. Nanomaterials, 6(11), 205.‏

29. Hemalatha S., M.(2017) Green Synthesis, Characterization And Antibacterial Studies Of Cuo Nanoparticles From Eichhornia Crassipes. Rasayan J. Chem., 10 (3), 838-843 http://dx.doi.org/10.7324/RJC.2017.1031800

30. Awwad, A.M., Albiss, B.A., Salem, N.M., 2015. Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Medical Journal 2, 91- 101.

31. Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 2016, 9, 75, https://doi.org/10.3390/ph9040075

Downloads

Published

13-05-2025

Issue

Section

Articles

How to Cite

1.
Barag W, Shtewi F, Al-Adiwish W, Tarroush A. First Report of green Synthesis of Copper Oxide Nanoparticles from Brassica Tournefortii Leaves Extract and Their Antibacterial Activity. LJMR [Internet]. 2025 May 13 [cited 2025 May 14];16(2-B):65-7. Available from: https://ljmr.ly/index.php/ljmr/article/view/348

Similar Articles

1-10 of 54

You may also start an advanced similarity search for this article.