Shewanella algae meningitis and early onset neonatal sepsis: a case report of Libyan newborn and literature review

Fathia A Almurabet* and KheriaOAlmamori

Neonatal Intensive Care Unit, Department of Pediatric, Zawia Teaching Hospital, Faculty of Medicine, University of Zawia, Zawia, Libya

*Correspondence: Murabetf@gmail.com

Abstract: Neonatal sepsis still a main leading cause of morbidity and mortality among neonates, especially in the developing countries. Most cases of Neonatal sepsis in neonatal intensive care unit are attributed to GB streptococcus, klebsiellapneumonia and other members of Enterobacteriaceae family. Shewanella algae (S.algae) is a gram−negative saprophytic bacillus, commonly associated with the marine environment, which has been isolated from humans. Early onset neonatal sepsis caused by S.algae is uncommon. We report a first case of Shewanella. Algaemeningitis in newborn with early onset neonatal sepsis which was responding to antimicrobial therapy and associated with good early outcome and no late neurodevelopmental sequel.

Keywords: Shewanella algae, neonatal meningitis, early onset neonatal sepsis, Libya.
Introduction

Neonatal sepsis, a blood stream infection occurring during the first month of life, is associated with increased mortality and morbidity (1). Early onset neonatal sepsis (EONS) develops within three days of birth. The organisms associated with it are derived from the mother during the intrapartum period; these are group B streptococcus, klebsiella, escherichia coli, streptococcus viridians, enterococci, staphylococcus aureus, pseudomonas aeruginosa and the other gram negative bacilli (2, 3). Shewanella spp; saprophytic non fermenting gram-negative bacilli are an uncommon cause of human disease associated with three characteristic patterns of human infection; i.e., soft tissue infection, bacteremia and neonatal sepsis (4, 6, 12). Here, we report a case of neonatal meningitis and early onset neonatal sepsis caused by shewanella algae. Shewanella algae is a marine bacteria and an uncommon cause of infection in humans caused by exposure to sea water. However, these infections are often associated with high mortality. Prematurity is a known as a risk factor. Thus, we report an uncommon case of meningitis with early onset neonatal sepsis caused by shewanella algae in a newborn delivered by caesarean section at 34 weeks of gestation. S. algae is saprophytic bacterium and a novel pathogen of neonatal sepsis and very rare cause of neonatal meningitis particularly in an institutional setup, where exposure to contaminated water is unlikely. This case highlights the importance of a clinical suspicion and microbiology laboratory in indentifying the correct etiological agent for neonatal meningitis and sepsis (Shewanella algae in our case), therefore, facilitating the use of appropriate antibiotics, which resulted in a better and satisfactory clinical early and late outcome.

Case: a 39 years old para four diabetic lady with previous four caesarean sections presented at 34 weeks gestation in labor, she has history of intrauterine fetal death at 36 weeks and history of abortion at 18 weeks. No history of premature rupture of membrane. Emergency lower segment caesarean section was done and 3.235 kg female baby was delivered. Apgar score was 5/10 at one minute and 9/10 at 5 minute then the baby was transferred to the special care baby unit for management as infant of diabetic mother where the baby develops sign of mild respiratory distress (transit...
tachypnea of newborn: TTN). Oxygen supply with oxyhood, intravenous fluid was started. Complete blood count revealed WBC 24 Hgb 18.7g/dl platelets 266 lymphocyte 25.8% neutrophils 62.8% bloodsugar, serumcalcium monitoring was done and managed accordingly, earlyenteral (trophic) feeding was started by nasogastric tube. On the second day, respiratory distress was subsided (Transit tachypnea of newborn). Oral feeding by sucking was started, she developed hypocalcaemia and hypomagnaeemia. Treatment was given, at the end of the second day of life she was well, jaundice, serum bilirubin was at phototherapy level and C reactive protein (CRP) was negative. On the third day, she was unwell depressed activity, hypoxic, oxygen saturation by pulse oximetry 70%, Febrile 39.5°C, tachypnic RR 65/min, tachycardia 170 beat /min systemic examination was normal. The baby was transferred to the intensive care unit where CBC, CRP Bloodsugar, S.Calcium, B.Urea and electrolyte. Full septic screen was done (Lumber puncture, suprapubic aspiration for urine culture and sensitivity, blood for culture and sensitivity, chest X ray), parenteral antibiotic Ampicillin 100mg/kg day divided 12 hourly and gentamycin 5mg/kg /day iv divided 12 hourly was started. Investigations results revealed total white cell count 21.1x10³/µl, red blood cells 5.05x10⁶ per µl, hemoglobin 17.1 g /dl, platelet 173x10³ /µl. The differential leucocytes count (Neutrophils 82.4%, lymphocyte 13.8%, mixed 3.8%. Immature Neutrophils 17.4x10³ per µl CRP was raised 4.8mg /dl. Ampicillin and gentamycin was started as empirical therapy. Blood sugar at time of lumber puncture was 44 mg/dl, cerebrospinal fluid sugar was <10mg/dl and cerebrospinal fluid protein was > 300 mg/dl. The baby was stable ampicillin dose was increased to 150mg /kg 12hourly intravenously. After 24 hours the baby general condition was unsatisfactory, lethargic, mottled skin, developed prolonged apnea stopped by mechanical stimulation. Complete blood count, CRP, blood sugar, urea, electrolytes, serum calcium, and blood culture was taken. Ampicillin and gentamycin were discontinue. Cefotaxime (clamoring) and amikacin were started. CRP was 2.4mg /dl. WBC 20.1 x10³/µL neutrophils % 65% lymphocyte%25.9% HGB 16 gm/dl. Calcium was 7.7 mg/dl, blood sugar was 188mg/dl, blood urea 25mg/dl, sodium 146 mmol/l and potassium 4.2 mmol/l. Treatment of hypocalcaemia was done.
Blood and cerebrospinal fluid cultures was done by automated bioMerieux customer and VITEK 2-compact and gave a positive result after 24 hours where gram negative bacilli which produced β-haemolytic colonies with a tan pigment on blood agar media were isolated from CSF culture (Figure 1) which is growth of shewanella algae. Blood culture also revealed the growth of shewanella algae after three days.

Figure 1: β haemolytic colonies with tan pigment of gram negative bacilli on blood agar media (shewanella algae)

The anti-microbial susceptibility test reported that isolate was resistant to ampicillin, gentamycin, amoxicillin clavulanic acid and sensitive to cefotaxime, ceftazidime, ceftriaxone, meropenem, imipenem, ciprofloxacin. Urine culture showed no growth. The patient became better, his vital signs and oxygen saturation by pulse oximetry were normal. Neurological and systemic examination was normal, repeated blood sugar and serum calcium were normal when the cultures revealed growth of Shewanella algae we ask the mother about exposure to sea water and she reported that her house is too near to the sea and gave history of swimming in sea water frequently before delivery. Head ultrasound examination was normal. CRP after 3 days of starting cefotaxime (claforan) and amikacin was 1.2 mg/dl. One week after it was negative. Two weeks of treatment was completed, the baby was well, accepting oral feeding. Normal examination CRP negative. No growth in second blood culture. Antibiotic stopped and discharged with good condition. On follow up as outpatient she was doing well. Normal development. Now she is 5 years old with normal physical and neurological development.
Discussion

The genus *shewanella* is an oxidative, H25 producing gram negative bacillus (1, 4,6,7), the two bio-types, *S*. *algae* and *S*. *putrefaciens* (7,9). *S*. *putrefaciens* are differentiated based on haemolytic property on blood agar, ability to ferment carbohydrates, growth at 42°C, ability to grow on salmonella-shigella agar and 6.5% sodium chloride (1,4,9,10). *Shewanella* spp are often isolated from natural habitats like water and soil. Human infection caused by this group of organism is rare. Common infection caused by this organism include skin and soft tissue infection (8-12,14,16), hepatobiliary disease (6,13) and bacteremia(4,9,13,18), including neonatal sepsis,(2,5,10,11,12,14-16). Commonly, infections caused by this organism are associated with exposure to environmental sources like water. The first cases of *S*. *algae* bacteremia were reported in Denmark (1999) in two patients with chronic leg ulcers. They had been exposed to the same marine environment (8). Iwata et al. reported a primary *shewanella* algae septicemia in a Japanese women undergoing hemodialysis (18). *S*. *algae* infections have been reported in children, but there have been no previous reports of bacteremia. Ear infections are common and aseries of 65 cases described children who have otitis media that occur during summer (1,16). Sardelic et al. reported a case of ventriculitis and peritonitis caused by *S*. *algae*, it was in Croatia in child with ventriculoperitoneal shunt(17). The infection developed after contact with seawater and began as otitis (14). Tan et al. reported a case of purulent pericarditis with greenish pericardial effusion caused by *shewanella* algae (19). *Shewanella* algae bacteremia and associated cellulites in a patient with multiple myelomawas seen in Budap reported by Krsnik (20). A case of bacteremia and suppurative vertebral osteomyelitis/discitis due to *shewanella* algae occurring after raw-fish consumption in Kansenshogakau Zasshi reported by Shimizu and Matsumura (21). An outbreak of *shewanella* algae and *shewanella* putrefaciens infections caused by a shared measuring cup in general surgery unit in Korea was happen reported by Kum et al. (22).

Since traditional new born care practice like bathing or prelacteal feeding are wide in rural populations, adherence to the standard obstetric care and health education would be
imperative. In preventing this infections, especially in the case of non-institutional deliveries. In hospital setups, vigilant nursing care along with surveillance of hospital environment and facility for rapid laboratory diagnosis is likely to reduce the risk of shewanella infections (15). In our patient, the source of infection remained undetected. Although the infection was acquired postnatally, water was unlikely to be a source in this case as the baby was not exposed for bathing or pre-lacteal feeding. Moreover, the environmental screening of water sources in neonatal intensive care unit and delivery suite failed to grow shewanella spp. So, the infection was most likely maternal acquired as the mother reported swimming in sea water before delivery. In Carolina, García-Fragoso et al. reported S. algae bacteremia in extreme preterm baby with maternal history of swimming in sea water early in pregnancy (16). Shewanella bacteremia has been reported in infants premature and term neonates (7, 13, 15, 16). Brink et al. studied bacteremia in 24 patients, of which the majority were premature neonate (66%, 16 out of 24), (2, 7, 10, 15, 16). Pneumonia and respiratory distress were strongly associated with shewanella bacteremia (16), however in our case the baby has no respiratory illness apart from TTN in the first hours of life as in Charles et al. reported a case of neonatal sepsis caused by S. algae has no associated respiratory diseases (15). In the case, series of infections by shewanella spp. However, all the patients were adult and mainly presented with wound and soft infections which were chronic in nature (9, 18, 19). In all the previously reported cases of shewanella infection in adults, children and neonates no case of meningitis had been documented in the literature. Although S. algae has been isolated from various human samples (1). Early onset neonatal sepsis [EONS] caused by this organism is uncommon. Around 13-28% mortality has been reported with shewanella infection (1, 10). In spite, there is treatment failure due to emergence of resistance of carbapenem during therapy for shewanella algae bacteremia reported by Kim and his etal (23). Susceptibility to gentamycin, cephalosporine and ciprofloxacillin was seen in various studies (11, 15, 16). This is in accordance with our finding since in our isolated strain exhibited resistance to the ampicillin, gentamycin and highly sensitive to amikacin, cephalosporines and carbapenemes. The patient was improved clinically as we were starting gentamycin as empirical therapy and changed to amikacin.
and cephalosporine in from of cefotaxime (claforan) when the patient became febrile and CRP was raising and repeated blood culture result revealed no growth and finally the patient did not develop any early or late sequels which support the sensitivity of our isolated strain to these antibiotic treatment. So, early detection and initiation of proper treatment of shewanella algae meningitis and sepsis result to successful outcome. In conclusion, shewanella algae is an unusual human pathogen. Neonatal sepsis caused by shewanella algae is uncommon and neonatal meningitis caused by shewanella algae is very rare and was not reported in the literature before. Early diagnosis and proper management of neonatal meningitis caused by S. algae is associated with early good outcome and normal neuro-development.

References

