

Assessment of Ivy Leaf Extracts for Antibacterial Activity against Pathogenic Bacteria: No Evidence of Efficacy

Abdulgader Dhawi¹, Mahmoud Bashir Agena², Abdulali Tawee³, Bushra E Aboukhadeer⁴, Omaima B. Hassan⁵, Dias A. Aljaffal⁵, Wasan A. Shaqman⁵.

¹Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli,
²Libyan Medical Research Center, Zawia, Libya

³Department of Zoology, Faculty of Science, University of Zawia, Zawia, Libya.

⁴Department of Medical Laboratory, Faculty of Health Sciences, University of Aljafara

⁵Department of Pharmacy, University of Khota Al-Arefin Al-Ahlia, Alzahra, Libya.

Correspondence Aouter Mahmoud Bashir Agena. Email: mahmoudagena@gmail.com

Abstract

Background: The global spread of antibiotic resistance in bacteria such as *Escherichia coli*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa* has created an urgent need for new antimicrobial treatments. This is especially critical in Libya, where infections from multidrug-resistant pathogens are common. **Aim:** This study aimed to investigate the in vitro antibacterial potential of aqueous and alcoholic extracts from ivy leaves (*Hedera helix*) against these key pathogenic bacteria. **Materials and Methods:** We prepared extracts using dried ivy leaves and tested them against clinical bacterial isolates using standard disc diffusion and broth macro-dilution methods to determine the minimum inhibitory concentration (MIC). **Results:** Our results showed a complete absence of antibacterial activity. No zones of inhibition were observed in the disc diffusion assay, and the MIC for all extracts against all bacterial strains was determined to be greater than 100%, the highest concentration tested. **Conclusion:** These findings indicate that the therapeutic value of *H. helix* leaf extracts, while well-established for respiratory symptoms, does not include a direct antibacterial effect against the pathogens tested. The search for novel antimicrobials from botanical sources should focus on other plants and more advanced extraction techniques.

Keywords: Ivy Leaf Extracts, Antibacterial Activity, Pathogenic Bacteria

Introduction

The escalating crisis of antimicrobial resistance (AMR) poses a major threat to global public health, as pathogenic bacteria evade antibiotic pressure and immune defenses by manipulating host cell components—particularly the cytoskeleton—thereby enhancing persistence and reducing the effectiveness of standard antibiotics against common bacterial pathogens. [1,2,3] Multidrug-resistant (MDR) bacteria, including *Escherichia coli*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa*, are leading causes of severe infections in both healthcare and community settings, contributing to high rates of illness, mortality, and healthcare costs [4]. In Libya, the problem is particularly severe, with documented reports of methicillin-resistant *Staphylococcus aureus* (MRSA) [5], vancomycin-resistant *enterococci* [6], and carbapenem-resistant *Acinetobacter baumannii* and *K. pneumoniae* [7]. This alarming situation requires the urgent exploration of alternative and complementary treatment strategies. *Proteus mirabilis* has occasionally been reported as a cause of pneumonia in humans. Due to its rarity and the presence of underlying chronic conditions, such infections may be misdiagnosed as malignant disease [8,9].

Medicinal plants represent a rich source of bioactive compounds and have a long history of use in treating various ailments, including infectious diseases [10]. Their potential for novel mechanisms of action, lower

toxicity, and synergy with existing antibiotics makes them a compelling focus for research [11]. In Libya, some native plants like *Cistus salvifolius* and *Salvia officinalis* have shown promising antibacterial activity against MDR strains [12,13].

Ivy leafs (*Hedera helix* L.) is a well-established herbal medicine used primarily for its expectorant, antispasmodic and anti-inflammatory properties in treating upper respiratory tract infections [14,15]. Its efficacy is attributed to saponins, such as hederacoside C and α -hederin, which help stimulate bronchial secretion and widen the [16,17]. While its benefits for relieving symptoms are clear, its direct antibacterial potential is less studied and often ambiguous in the scientific literature [18,19]. Some studies suggest mild antimicrobial effects, but conclusive evidence against prevalent MDR pathogens is lacking.

Given the traditional use of ivy (*Hedera helix*) for respiratory illnesses in which largely are associated with bacterial infections, there is a vital need to systematically assess its direct antibacterial activities. Therefore, this study aims to rigorously evaluate the in vitro antibacterial efficacy of both aqueous and alcoholic extracts of *H. helix* leaves against a panel of clinically relevant multidrug-resistant (MDR) bacteria isolated from a Libyan hospital setting. This approach will help identify potential sources of alternative antibacterial agents to combat multidrug-resistant pathogens in clinical practice.

Materials and Methods

Plant Material and Extract Preparation

Dried leaves of *H. helix* were obtained from a licensed herbal shop (Al-Khawildi Herb Shop, Zahra City, Libya). The plant material was cleaned of any physical impurities. The leaves were ground into a fine powder using a sterile electric grinder. We used two extraction solvents: distilled water and 70% ethanol. However, Water and ethanol were used because they are safe, effective, and suitable for extracting biologically active compounds from plants for food and medical applications [20,21].

For each solvent, 100 g of powder was mixed with 400 mL of solvent in sealed (1:4 w/v), opaque glass containers. The mixtures were shaken continuously for 48 hours at room temperature. The resulting crude extracts were then centrifuged to remove solid debris. The liquid supernatants were concentrated using a rotary evaporator under reduced pressure and then dried in an oven at 40–45°C for one week. This process yielded 4.86 g of alcoholic extract and 1.85 g of aqueous extract.

Solution and Disc Preparation

Stock solutions were prepared by dissolving the dried extracts in distilled water to a final concentration of 100% (1 g/ml) and stored at -20 °C. A secondary stock solution (200 mg/mL) was prepared from each extract for downstream experiments. Serial dilutions (10%, 20%, 30%) were then made from this working solution using sterile distilled water. Sterile filter paper discs (6 mm diameter) were soaked with 20 µL of each extract concentration. Control discs were prepared using 70% ethanol and air-dried under sterile conditions to evaluate any potential effect of residual solvent.

Antibiotic Susceptibility test : Broad range of antibiotics (Cefotaxime (CTX30 µg), Gentamicin (CN10 µg), Co-trimoxazole (Bactrim STX25µg), Meropenem (MEM10 µg), Ciprofloxacin (CIP5 µg), Levofloxacin (LEV 5 µg), Ceftriaxone (CRO 30 µg) Azithromycin (AT30 µg), Augmentin (amoxicillin/clavulanic acid (30 µg), Gentamicin (CN 10µg), Doxycycline (DOX 30 µg) and Doxycycline (30 µg),) were used in this assay to cover both Gram-negative and G-positive strains.

Bacterial Strains and Susceptibility Testing

Clinical swabs of *S. aureus*, *K. pneumoniae*, and *Proteus mirabilis* were obtained from a local diagnostic laboratory after identification and were handled according to standard biosafety procedures in cooler bags. These strains, isolated from hospitalized patients, are potentially representative of local MDR pathogens. For ethical considerations, no patient information was collected. Bacterial suspensions were prepared and adjusted to the 0.5 McFarland standard. Antibacterial activity was evaluated using the standard Kirby-Bauer disc diffusion method on Mueller-Hinton Agar (MHA) plates, following established guidelines (CLSI, 2018). For each bacterial strain, three MHA plates were inoculated. Test discs and control discs were placed on the agar surfaces. The plates were incubated at 37°C for

24 hours, after which any zones of inhibition were measured.

The minimum inhibitory concentration (MIC) was determined using a broth macrodilution method. A series of two-fold dilutions of the extracts was prepared in liquid nutrient broth. A 500 µL aliquot of each concentration was transferred to sterile test tubes, followed by 500 µL of the standardized bacterial suspension. Tubes were incubated at 37°C for 24 hours. After incubation, a sample from each tube was placed on fresh MHA plates to check for bacterial growth, thus determining the MIC as the lowest concentration that prevented visible growth.

Statistical Analysis

All experiments were performed in triplicate. Due to the complete absence of inhibitory activity in all tests, the results are presented descriptively.

Results

Both the aqueous and alcoholic extracts of *Hedera helix* leaves showed no antibacterial activity against any of the tested bacterial strains.

Disc Diffusion Assay

No zones of inhibition were observed around any of the discs containing the ivy leaf extracts at any of the tested concentrations (10%, 20%, 30%) for any of the four bacterial species after 24 hours of incubation. The negative control discs also showed no zones, confirming that the solvent had no antibacterial effect.

Minimum Inhibitory Concentration (MIC) Assay

In the broth macro-dilution test, all tubes containing bacteria and any concentration of ivy extract showed visible turbidity after 24 hours, indicating bacterial growth. Subculturing from these tubes onto solid MHA media resulted in confluent bacterial growth, confirming the absence of any bactericidal or bacteriostatic activity. The MIC for both extracts against all tested bacteria was therefore greater than 100%.

Antibiotic Susceptibility Profile

The tested bacterial isolates showed variable susceptibility patterns to the antibiotics evaluated. Fluoroquinolones exhibited the highest antibacterial activity, with ciprofloxacin (35 mm) and levofloxacin (34 mm) producing the largest inhibition zones, classifying all tested isolates as susceptible according to CLSI/EUCAST criteria. Ceftriaxone (29 mm) and gentamicin (20 mm) also demonstrated antibacterial activity within the susceptible range. In contrast, meropenem displayed moderate activity, with a mean inhibition zone of 16 mm, corresponding predominantly to an intermediate susceptibility classification. Azithromycin produced minimal inhibition (5 mm), indicating resistance among the tested isolates. Similarly, cefotaxime and co-trimoxazole (Bactrim) showed no inhibitory effect against *Proteus* spp., with no measurable zones of inhibition. Amoxicillin/clavulanic acid (Augmentin) and doxycycline were ineffective against *Klebsiella pneumoniae* and *Staphylococcus aureus*. Although Augmentin produced a small inhibition zone (9 mm) against *Klebsiella pneumoniae*, this remained

below the susceptibility breakpoint and was classified as resistant. In contrast, doxycycline displayed susceptible activity against *Proteus mirabilis* (20mm).

Discussion:

This study found no evidence of antibacterial activity for either aqueous or alcoholic extracts of *Hedera helix* leaves against several clinically significant bacteria, including MDR strains relevant to Libya. The negative results were consistent across two standard testing methods and a wide range of concentrations.

The main value of ivy leaf extracts lies in managing inflammatory respiratory conditions like acute bronchitis, where they serve as effective expectorants and bronchodilators [22,23]. The bioactive saponins, such as α -hederin, work by stimulating specific receptors, leading to increased bronchial secretion and thinner mucus [24]. Our findings confirm that this mechanism is separate from a direct antibacterial action. This suggests that any clinical improvement in respiratory infections from ivy is likely due to symptomatic relief and not the killing of bacteria.

The pathogens tested, particularly *P. aeruginosa* and *K. pneumoniae*, are known for their strong resistance mechanisms, including efflux pumps, drug-inactivating enzymes, and impermeable outer membranes [25,26]. The lack of activity against these robust bacteria indicates that the compounds extracted by water and ethanol, primarily saponins and flavonoids, are not potent enough to overcome these bacterial defenses [27]. The solvents used for extraction are an important factor. While water and ethanol are good for extracting the saponins responsible for ivy's expectorant effects [16], they might not be suitable for isolating other potential antimicrobial compounds. Other research on Libyan plants, such as *Cistus salvifolius*, found strong anti-MRSA activity using methanol [11], suggesting that a different solvent might be needed for ivy. Also, testing other parts of the plant or using more advanced extraction methods could reveal bioactive components that this study did not capture.

The observed susceptibility pattern aligns with recent regional and global data, indicating preserved fluoroquinolone efficacy due to potent bactericidal activity and good bioavailability, although their overuse contributes to the development of antimicrobial resistance ([28]). The moderate activity of ceftriaxone and gentamicin suggests the presence of substantial yet variable resistance, while the intermediate response to

References.

1. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. *Pathogens*. 2021 Oct 12;10(10):1310. doi: 10.3390/pathogens10101310. PMID: 34684258; PMCID: PMC8541462.
2. Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. *Healthcare (Basel)*. 2023 Jul 5;11(13):1946. doi:

meropenem indicates the emerging development of carbapenem resistance mediated by carbapenemase genes, as previously reported with different pathogenic isolates in Iraq [29,30]. High resistance to azithromycin, cefotaxime, co-trimoxazole, and amoxicillin/clavulanate is consistent with intrinsic and acquired mechanisms in *Proteus* and *Klebsiella* Spp. [31,32,33] These findings underscore the necessity for local antimicrobial susceptibility testing and stewardship to guide empirical therapy and curb resistance [34,35].

A limitation of this work is the absence of a positive control antibiotic in the diffusion assays, which would have fully confirmed the validity of our experimental conditions. Future studies should include this control. Testing the extracts against less resistant bacteria commonly linked to respiratory infections could also provide useful information.

Conclusion:

In conclusion, the results of this in vitro study do not support the use of *Hedera helix* leaf extracts, prepared with water or alcohol, as a direct antibacterial treatment against common pathogenic bacteria, including MDR strains. The findings reinforce the existing view that ivy's clinical benefit comes from managing cough symptoms rather than from antimicrobial activity. The urgent need for new antimicrobials, particularly in high-AMR regions such as Libya, remains. Future research should focus on other medicinal plants with a history of traditional use, employing a broader range of extraction methods to more thoroughly explore their potential against resistant pathogens.

Acknowledgments

The authors thank the staff of the diagnostic laboratory for providing the bacterial isolates and the Libyan Medical Research Center for providing laboratory space and equipment.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

10.3390/healthcare11131946. PMID: 37444780; PMCID: PMC10340576.

3. Agena MB, Ibrahim KM, Alsonosi AM, Saad MT, Elgamoudi BA. Investigating the role of cytoskeletal dynamics in *Cronobacter* invasion: a study of Caco-2 and H4 cell lines. *Appl Microbiol*. 2025;5:89. doi: 10.3390/applmicrobiol5030089.

4. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdely M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ,

Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. *Lancet Infect Dis.* 2013 Dec;13(12):1057-98. doi: 10.1016/S1473-3099(13)70318-9.

5. Zorgani A, Elahmer O, Franka E, Grera A, Abudher A, Ghengesh KS. Detection of meticillin-resistant *Staphylococcus aureus* among healthcare workers in Libyan hospitals. *Journal of Hospital Infection [Internet]*. 2009 Jul 29;73(1):91–92. Available from: <https://doi.org/10.1016/j.jhin.2009.06.019>

6. Ahmed MO, Elramalli AK, Baptiste KE, Daw MA, Zorgani A, Brouwer E, Willems RJL, Top J. Whole Genome Sequence Analysis of the First Vancomycin-Resistant *Enterococcus faecium* Isolates from a Libyan Hospital in Tripoli. *Microb Drug Resist.* 2020 Nov;26(11):1390-1398. doi: 10.1089/mdr.2019.0095. Epub 2020 Mar 16. PMID: 32181678.

7. Kieffer N, Ahmed MO, Elramalli AK, Daw MA, Poirel L, Alvarez R, Nordmann P. Colistin-resistant carbapenemase-producing isolates among *Klebsiella* spp. and *Acinetobacter baumannii* in Tripoli, Libya. *J Glob Antimicrob Resist.* 2018 Jun;13:37-39. doi: 10.1016/j.jgar.2018.02.020. Epub 2018 Mar 9. PMID: 29530497

8. Okimoto N, Hayashi T, Ishiga M, Nanba F, Kishimoto M, Yagi S, Kurihara T, Asaoka N, Tamada S. Clinical features of *Proteus mirabilis* pneumonia. *J Infect Chemother.* 2010 Oct;16(5):364-6. doi: 10.1007/s10156-010-0059-3. Epub 2010 May 26. PMID: 20502932.

9. Ullah S, Saadaat R, Hamidi H, Haidary AM. *Proteus mirabilis*: A rare cause of pneumonia, radiologically mimicking malignancy of the lung. *Clin Case Rep.* 2023 Sep 19;11(9):e7937. doi: 10.1002/ccr3.7937. PMID: 37736480; PMCID: PMC10509339.

10. Cowan MM. Plant products as antimicrobial agents. *Clin Microbiol Rev.* 1999 Oct;12(4):564-82. doi: 10.1128/CMR.12.4.564. PMID: 10515903; PMCID: PMC88925.

11. Gibbons S. Anti-staphylococcal plant natural products. *Nat Prod Rep.* 2004 Apr;21(2):263-77. doi: 10.1039/b212695h. Epub 2004 Mar 1. PMID: 15042149.

12. Abouzeed YM, Elfahem AA, Zgheer FS, Ahmed MO. Antibacterial in-vitro activities of selected medicinal plants against methicillin resistant *Staphylococcus aureus* from Libyan environment. *J Environ Anal Toxicol.* 2013;3:7. doi:10.4172/2161-0525.1000194

13. El-Mokasabi zeed YM, Elfahem AA, Zgheer FS, Ahmed MO. Antibacterial in-vitro activities of selected medicinal plants against methicillin resistant *Staphylococcus aureus* from Libyan environment. *J Environ Anal Toxicol.* 2013;3:7. doi:10.4172/2161-0525.1000194

14. European Medicines Agency (EMA). Assessment report on *Hedera helix* L., *Folium*. 2018

15. Schaefer A, Kehr MS, Giannetti BM, Bulitta M, Staiger C. A randomized, controlled, double-blind, multi-center trial to evaluate the efficacy and safety of a liquid containing ivy leaves dry extract (EA 575®) vs. placebo in the treatment of adults with acute cough. *Pharmazie.* 2016 Sep 1;71(9):504-509. doi: 10.1691/ph.2016.6712. PMID: 29441845

16. Lang C, Röttger-Lüer P, Staiger C. A Valuable Option for the Treatment of Respiratory Diseases: Review on the Clinical Evidence of the Ivy Leaves Dry Extract EA 575®. *Planta Med.* 2015 Aug;81(12-13):968-74. doi: 10.1055/s-0035-1545879. Epub 2015 Apr 15. PMID: 25875509.

17. Schmidt M, Thomsen M, Schmidt U. Suitability of ivy extract for the treatment of paediatric cough. *Phytother Res.* 2012 Dec;26(12):1942-7. doi: 10.1002/ptr.4671. Epub 2012 Apr 25. PMID: 22532491.

18. Holzinger F, Chenot JF. Systematic review of clinical trials assessing the effectiveness of ivy leaf (*Hedera helix*) for acute upper respiratory tract infections. *Evid Based Complement Alternat Med.* 2011;2011:382789. doi: 10.1155/2011/382789. Epub 2010 Oct 3. PMID: 20976077; PMCID: PMC2957147.

19. Baharara H, Moghadam AT, Sahebkar A, Emami SA, Tayebi T, Mohammadpour AH. The Effects of Ivy (*Hedera helix*) on Respiratory Problems and Cough in Humans: A Review. *Adv Exp Med Biol.* 2021;1328:361-376. doi: 10.1007/978-3-030-73234-9_23. PMID: 34981489.

20. Lim KJA, Cabajar AA, Lobarbio CFY, Taboada EB, Lacks DJ. Extraction of bioactive compounds from mango (*Mangifera indica* L. var. Carabao) seed kernel with ethanol-water binary solvent systems. *J Food Sci Technol.* 2019 May;56(5):2536-2544. doi: 10.1007/s13197-019-03732-7. Epub 2019 Apr 1. PMID: 31168135; PMCID: PMC6525705.

21. Fadhila SI, Hayati EK, Rafi M, Sabarudin A. Effect of ethanol–water concentration as extraction solvent on antioxidant activity of *Acalypha indica*. *Al Kimiya J Ilmu Kim Dan Terapan.* 2023;10(2):133-142. doi:10.15575/ak.v10i2.30081.

22. Kemmerich B, Eberhardt R, Stammer H. Efficacy and tolerability of a fluid extract combination of thyme herb and ivy leaves and matched placebo in adults suffering from acute bronchitis with productive cough. A prospective, double-blind, placebo-controlled clinical trial. *Arzneimittelforschung.* 2006;56(9):652-60. doi: 10.1055/s-0031-1296767. PMID: 17063641.

23. Schönknecht K, Fal AM, Mastalerz-Migas A, Joachimiak M, Doniec Z. efficacy of dry extract of ivy leaves in the treatment of productive cough. *Wiad Lek.* 2017;70(6 pt 1):1026-1033. PMID: 29478973.

24. Stauss-Grabo M, Atiye S, Warnke A, Wedemeyer RS, Donath F, Blume HH. Observational study on the tolerability and safety of film-coated tablets containing ivy extract (Prospan® Cough Tablets) in

the treatment of colds accompanied by coughing. *Phytomedicine*. 2011 Apr 15;18(6):433-6. doi: 10.1016/j.phymed.2010.11.009. Epub 2011 Jan 5. PMID: 21211950.

25. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. *Molecules*. 2020 Mar 16;25(6):1340. doi: 10.3390/molecules25061340. PMID: 32187986; PMCID: PMC7144564.

26. Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. *Expert Rev Anti Infect Ther*. 2013 Mar;11(3):297-308. doi: 10.1586/eri.13.12. PMID: 23458769.

27. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. *Int J Antimicrob Agents*. 2005 Nov;26(5):343-56. doi: 10.1016/j.ijantimicag.2005.09.002.

28. Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjali Shahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. *Front Public Health*. 2022 Dec 21;10:1025633. doi: 10.3389/fpubh.2022.1025633. PMID: 36620240; PMCID: PMC9815622.

29. Al-Ouqaili MTS, Hussein RA, Kanaan BA, Al-Neda ATS. Investigation of carbapenemase-encoding genes in *Burkholderia cepacia* and *Aeromonas sobria* isolates from nosocomial infections in Iraqi patients. *PLoS One*. 2025 Aug 29;20(8):e0315490. doi: 10.1371/journal.pone.0315490. PMID: 40880429; PMCID: PMC12396648.

30. AL-Daher RI. Prevalence of carbapenemase genes in *Klebsiella pneumoniae* isolated from urine samples in Iraq. *Int J Med Sci Dent Health*. 2025;11(10):165-171. doi:10.55640/ijmsdh-11-10-19

31. Stock I. Natural antibiotic susceptibility of *Proteus* spp., with special reference to *P. mirabilis* and *P. penneri* strains. *J Chemother*. 2003 Feb;15(1):12-26. doi: 10.1179/joc.2003.15.1.12. PMID: 12678409.

32. Salama LA, Saleh HH, Abdel-Rhman SH, Barwa R, Hassan R. Assessment of typing methods, virulence genes profile and antimicrobial susceptibility for clinical isolates of *Proteus mirabilis*. *Ann Clin Microbiol Antimicrob*. 2025 Jan 15;24(1):4. doi: 10.1186/s12941-024-00770-8. PMID: 39815271; PMCID: PMC11734338.

33. Hammoudi AA, Hussein AN. Antibiotic resistance of *Klebsiella pneumoniae* isolates from inpatients with burn infections. *J Wasit Sci Med*. 2023;11(1):133-145. doi:10.31185/jwsm.448.

34. Gajic I, Kabic J, Kekic D, Jovicevic M, Milenkovic M, Mitic Culafic D, Tradic A, Ranin L, Opavski N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. *Antibiotics (Basel)*. 2022 Mar 23;11(4):427. doi: 10.3390/antibiotics11040427. PMID: 35453179; PMCID: PMC9024665

35. Howard A, Hughes DM, Green PL, Velluva A, Gerada A, Maskell S, Buchan IE, Hope W. Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use. *Nat Commun*. 2024 Nov 21;15(1):9924. doi: 10.1038/s41467-024-54192-3. PMID: 39572574; PMCID: PMC11582675.

addition

Table 1: Results of Antibacterial Activity Tests of Ivy Leaf Extracts

Bacterial Strain	Test Method	Extract Type	Concentrations Tested	Result (Inhibition Zone / Growth)
Staphylococcus aureus	Disc Diffusion	Aqueous	10%, 20%, 30%	0 mm / No zone
		Alcoholic	10%, 20%, 30%	0 mm / No zone
	MIC	Aqueous	12.5% - 100%	Growth at all concentrations
		Alcoholic	12.5% - 100%	Growth at all concentrations
Klebsiella pneumoniae	Disc Diffusion	Aqueous	10%, 20%, 30%	0 mm / No zone
		Alcoholic	10%, 20%, 30%	0 mm / No zone
	MIC	Aqueous	12.5% - 100%	Growth at all concentrations
		Alcoholic	12.5% - 100%	Growth at all concentrations
proteus mirabilis	Disc Diffusion	Aqueous	10%, 20%, 30%	0 mm / No zone

		Alcoholic	10%, 20%, 30%	0 mm / No zone
MIC		Aqueous	12.5% - 100%	Growth at all concentrations
		Alcoholic	12.5% - 100%	Growth at all concentrations
Control (70% Ethanol)	Disc Diffusion	Control for solvent		0 mm / No z